If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2-6x-351=0
a = 13; b = -6; c = -351;
Δ = b2-4ac
Δ = -62-4·13·(-351)
Δ = 18288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18288}=\sqrt{144*127}=\sqrt{144}*\sqrt{127}=12\sqrt{127}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-12\sqrt{127}}{2*13}=\frac{6-12\sqrt{127}}{26} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+12\sqrt{127}}{2*13}=\frac{6+12\sqrt{127}}{26} $
| x+(x+23)+(x−43)=121 | | -14=-4(6m+5)+6(1-5m) | | 5p+4=3(p-2) | | a²+a=87 | | 3b+11=5b-3 | | X•x=8/11 | | -60=-6(1+3x)+8(5x+7) | | 7p-15=3p+21 | | 3×x-28=13 | | 2m+7=5m-11 | | 20y+19=41 | | 2(3x-1)²+5(3x-1)+2=0 | | 1/3+9-1/6x=13 | | 6x+2=68° | | 5/4=b/12 | | 5/4=b12 | | 225+x=900 | | 2x=7-3x/2 | | -65a+58-36a+587-33a=698+14a-587+698-32a+184 | | x^2+5x−37=0 | | b=0.75/12 | | 8x+5–4x=4–2x–5 | | a+a=91 | | 5x-10=180° | | 5y+15=40 | | x^2-9x+38=0 | | 5*2^(0.3x)=16 | | 25y+15-16y=7y-1,5y-9 | | x^2−9x+38=0 | | 3x²-53x-76=0 | | 25p+10=15p-20+30 | | ⦁ 15+5x=10x |